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Efficacy and safety of immune checkpoint inhibitors for 
individuals with advanced EGFR-mutated non-small-cell 
lung cancer who progressed on EGFR tyrosine-kinase 
inhibitors: a systematic review, meta-analysis, and network 
meta-analysis
Yi Zhao*, Ying He*, Wei Wang*, Qi Cai*, Fan Ge*, Zisheng Chen*, Jianqi Zheng, Yuan Zhang, Hongsheng Deng, Ying Chen, Shen Lao, Hengrui Liang, 
Wenhua Liang†, Jianxing He†

Summary
Background The clinical benefits of immune checkpoint inhibitor (ICI)-based treatments in treating individuals with 
advanced EGFR-mutated non-small-cell lung cancer (NSCLC) who have progressed on EGFR tyrosine-kinase 
inhibitors (TKIs) remain controversial. We aimed to review the literature to comprehensively investigate the individual 
and comparative clinical outcomes of various ICI-based treatment strategies in this population.

Methods In this systematic review and meta-analysis, we used single-arm, pairwise, and network meta-analytical 
approaches. We searched PubMed, Embase, Cochrane Library, Web of Science, ClinicalTrials.gov, and relevant 
international conference proceedings from database inception to Jan 31, 2024, without language restrictions, to 
identify eligible clinical trials that assessed ICI-based treatments for individuals with advanced EGFR-mutated 
NSCLC who progressed on EGFR-TKIs. Studies considered eligible were published and unpublished phase 1, 2, or 3 
clinical trials enrolling participants with histologically or cytologically confirmed advanced EGFR-mutated NSCLC 
who had progressed after at least one EGFR-TKI treatment, and that evaluated ICI-based treatment strategies on at 
least one of the clinical outcomes of interest. The primary outcome analysed was progression-free survival. The 
protocol is registered with PROSPERO, CRD42021292626.

Findings 17 single-arm trials and 15 randomised controlled trials, involving 2886 participants and seven ICI-based 
treatment strategies (ICI monotherapy, ICI plus chemotherapy [ICI-chemo], ICI plus antiangiogenesis [ICI-antiangio], 
ICI plus antiangiogenesis plus chemotherapy [ICI-antiangio-chemo], dual ICIs [ICI-ICI], dual ICIs plus chemotherapy 
[ICI-ICI-chemo], and ICI plus EGFR-TKI [ICI-TKI]), were included. Three of these strategies—ICI monotherapy, ICI-
antiangio-chemo, and ICI-chemo—had sufficient data across the included studies to perform a pairwise meta-
analysis. The pairwise meta-analysis showed that, compared with chemotherapy, ICI monotherapy led to shorter 
progression-free survival (hazard ratio [HR] 1·73 [95% CI 1·30−2·29], I²=0%), whereas ICI-antiangio-chemo (HR 0·54 
[0·44−0·67], I²=0%) and ICI-chemo (HR 0·77 [0·67−0·88], I²=0%) prolonged progression-free survival. The network 
meta-analysis showed that ICI-antiangio-chemo yielded the best progression-free survival results, with substantial 
benefits over ICI-chemo (HR 0·71 [95% credible interval 0·59−0·85]), ICI monotherapy (HR 0·30 [0·22−0·41]), and 
non-ICI treatment strategies including antiangio-chemo (HR 0·76 [0·58−1·00]) and chemotherapy alone (HR 0·54 
[0·45−0·64]). ICI-antiangio-chemo was associated with higher risks of both any-grade and grade 3 or worse adverse 
events over ICI-chemo and chemotherapy in the network meta-analysis.

Interpretation For individuals with advanced EGFR-mutated NSCLC who progressed on EGFR-TKIs, ICI-antiangio-
chemo was identified as the optimal treatment option. The toxicity of this treatment was acceptable but needs careful 
attention. ICI-chemo showed appreciably greater efficacy than the standard-of-care chemotherapy. These findings 
clarified the roles of ICI-based treatment strategies in this difficult-to-treat refractory population, potentially 
complementing recent guidelines.

Funding None.

Copyright © 2024 Elsevier Ltd. All rights reserved, including those for text and data mining, AI training, and similar 
technologies.

Introduction
Approximately 40–50% of East Asian and 10–20% 
of White people with non-small-cell lung cancer (NSCLC) 

carry the EGFR mutation.1,2 For these individuals, various 
EGFR tyrosine-kinase inhibitors (TKIs), including 
erlotinib and gefitinib (first-generation), afatinib and 
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dacomitinib (second-generation), and osimertinib (third-
generation), have been established as the upfront 
standard-of-care treatments.3 However, acquired resist-
ance inevitably occurs in almost all responding 
individuals, with a median progression-free survival 
of 10–14 months for first-generation and second-genera-
tion and 18·9 months for third-generation EGFR-TKIs in 
a first-line setting.4–8 Although third-generation EGFR-
TKIs can be an effective salvage therapy for individuals 
with a Thr790Met mutation—emerging in 50% or more 
patients progressing on earlier-generation EGFR-TKIs—
their efficacy remains low due to other resistance factors, 
such as MET amplification.9,10

The advancement of immune checkpoint inhibitors 
(ICIs) targeting PD-1, PD-L1, or CTLA-4 checkpoint 
proteins has led to increased investigations into their role 
in patients who progressed on third-generation EGFR-
TKIs or on earlier-generation EGFR-TKIs without 
the Thr790Met mutation. However, ICI monotherapies 
have shown inadequate efficacy in this setting,11–14 and 
ICI-based combination treatments have shown incon-
sistent results.15,16 For example, ICI plus chemotherapy 
(ICI-chemo) showed significant improvement in 
progression-free survival compared with chemotherapy 
in the ORIENT-31 study (hazard ratio [HR] 0·72 [95% CI 
0·55−0·95], p=0·016)17 and KEYNOTE-789 study 
(HR 0·80 [0·65−0·97], p=0·012),18 but not in 
the CheckMate 722 study (HR 0·75 [0·56−1·00], 
p=0·053).19 ICI plus antiangiogenesis and chemotherapy 

(ICI-antiangio-chemo) consistently showed encouraging 
outcomes over non-ICI-based therapies in the ORIENT-31 
and IMpower150 studies.17,20 However, the antitumour 
activity of ICI-antiangio-chemo therapy has not been 
conclusively established due to the absence of direct 
comparisons with other ICI-based combination treat-
ments in randomised controlled trials.

In this difficult-to-treat population, another key issue is 
the absence of reliable efficacy biomarkers for guiding 
the use of ICI-based treatments, as individuals with 
distinct clinical and pathological characteristics might 
have different treatment responses. For instance, 
the ORIENT-31 study showed that individuals who were 
Thr790Met negative experienced greater progression-free 
survival benefits from sintilimab plus chemotherapy 
compared with those who were Thr790Met positive, and 
that those with a Leu858Arg mutation experienced 
greater benefits than those with exon 19 deletions.21 
Therefore, developing accurate biomarkers is essential 
for guiding appropriate selection of individuals who 
could benefit from ICI-based treatments after progressing 
on EGFR-TKIs.

We conducted this single-arm, pairwise, and network 
meta-analysis to investigate the individual and compara-
tive efficacy and safety of ICI-combination treatment 
strategies as well as their efficacy biomarkers, which are 
crucial for clinicians in making the optimal treatment 
decision for this population of individuals with advanced 
EGFR-mutated NSCLC who progressed on EGFR-TKIs.

Research in context

Evidence before this study
In individuals with advanced EGFR-mutated non-small-cell lung 
cancer (NSCLC), durable benefits of EGFR tyrosine-kinase 
inhibitors (TKIs) remain a challenge owing to the inevitable 
development of acquired resistance. Previous evidence has 
revealed the insufficient efficacy of immune checkpoint 
inhibitors (ICIs) as salvage therapies in individuals with 
resistance to tyrosine-kinase inhibitors. However, it remains 
unclear whether these individuals could benefit from the 
combination of ICIs with other treatments, including 
chemotherapies, antiangiogenic therapies, and EGFR-TKIs. We 
conducted a comprehensive meta-analysis using single-arm, 
pairwise, and network approaches to evaluate the individual 
and comparative clinical outcomes of various ICI-based 
treatment strategies in individuals with advanced EGFR-
mutated NSCLC who progressed on EGFR-TKIs. We searched 
PubMed, Embase, Cochrane Library, Web of Science, and 
ClinicalTrials.gov, and relevant international conference 
proceedings for clinical trials from database inception to 
Jan 31, 2024, using terms including “EGFR”, “NSCLC”, 
“immunotherapy”, “immune checkpoint inhibitor”, “PD-1”, 
“PD-L1”, and “CTLA-4” (full names and abbreviations), without 
language restrictions.

Added value of this study
This study, to our knowledge, is the first to summarise the 
efficacy and safety of all ICI-based treatment strategies, 
including ICI monotherapy and its combinations with other 
treatments, in individuals with advanced EGFR-mutated NSCLC 
who progressed on EGFR-TKIs. Our findings indicate that, for 
this population, ICI combined with chemotherapy resulted in 
improved outcomes compared with standard-of-care 
chemotherapy alone. Addition of antiangiogenic therapy to the 
ICI-chemotherapy combination further prolonged progression-
free survival. However, the increased toxicity of this treatment 
approach should be carefully considered as it caused more 
adverse events than chemotherapy or ICI combined with 
chemotherapy. Subgroup analyses underscore the importance 
of using a personalised approach to these ICI-based treatment 
strategies according to PD-L1 expression level, EGFR mutation 
type, and Thr790Met mutation status.

Implications of all the available evidence
Our study clarified the roles of ICI-based treatment strategies in 
individuals with advanced EGFR-mutated NSCLC who 
progressed on EGFR-TKIs. Our findings will potentially aid the 
decision-making process and complement recent treatment 
guidelines for this difficult-to-treat population.
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Methods
Search strategy and selection criteria
We did a systematic review, meta-analysis, and network 
meta-analysis of clinical trials on ICI-based treatment 
strategies for individuals with advanced EGFR-mutated 
NSCLC who progressed on EGFR-TKIs, following 
PRISMA guidelines (appendix pp 2−5).22 The review 
protocol was prospectively registered in PROSPERO, 
CRD42021292626.23

We searched the PubMed, Embase, Cochrane Library, 
Web of Science, and ClinicalTrials.gov databases for 
clinical trials from database inception to Jan 31, 2024, 
with combined search terms “NSCLC”, “EGFR”, 
“immunotherapy”, “immune checkpoint inhibitor”, 
“PD-1”, “PD-L1”, and “CTLA-4” (appendix pp 6−7). We 
also reviewed abstracts and presentations from major 
international conferences (American Association for 
Cancer Research Annual Meeting, American Society 
of Clinical Oncology Annual Meeting, European Society 
for Medical Oncology Congress, World Conference on 
Lung Cancer, and European Lung Cancer Congress) 
from 2019 to 2024, and checked reference lists of recent 
relevant reviews and meta-analyses to ensure complete 
literature retrieval.

Studies were deemed eligible if they were: published 
and unpublished phase 1, 2, or 3 clinical trials; trials 
enrolling participants with histologically or cytologically 
confirmed advanced (stage III, IV, or recurrent) EGFR-
mutated NSCLC who have progressed after at least 
one EGFR-TKI treatment; and trials evaluating ICI-based 
treatment strategies on at least one of the clinical 
outcomes of interest, including progression-free survival, 
overall survival, objective response rate, disease control 
rate, and adverse events of any grade or severe grade 
(grade ≥3). Studies not adhering to the inclusion criteria 
were excluded. Other exclusion criteria were: trials that 
grouped the participants with EGFR mutations together 
with those with other gene aberrations (eg, anaplastic 
lymphoma kinase) or with no confirmed gene aberra-
tions, yet without providing separate outcome data for 
participants with each specific gene aberration; and trials 
enrolling participants who had received a previous 
ICI treatment.

We extracted data including the study characteristics 
(study identification number, phase status, publication 
year, and sample size), demographic information (sex, 
age in years, ethnicity, and smoking status), treatments, 
and outcomes (HRs and their corresponding 95% CIs for 
progression-free survival and overall survival, and 
the number of participants with objective response, 
disease control, and any-grade or severe-grade adverse 
events). We prioritised data assessed by the blinded 
independent review committee based on the intention-
to-treat principle, and the most recent data from multiple 
reports of a single trial with different follow-up durations. 
In case of missing data in a study, supplementary mate-
rials were checked and, if necessary, the corresponding 

author was contacted. We independently did the litera-
ture search (YiZ, YH, and ZC) and data extraction (WW 
and FG). Any discordance was resolved by discussion 
with a senior investigator (WL).

Data analysis
The data analysis was conducted using R software 
(version 4.3.2), within which we used the meta package 
for both the single-arm (metaprop function) and pairwise 
(metagen and metabin functions) meta-analyses, and 
the gemtc package for the network meta-analysis. The 
primary outcome analysed was progression-free survival, 
and secondary outcomes analysed were overall survival, 
objective response rate, disease control rate, and any-
grade and severe-grade adverse events (appendix p 1). 
Risk of bias of the included studies was assessed using 
two tools: the Methodological Index for Nonrandomized 
Studies tool for single-arm clinical trials without 
randomisation,24 and the Cochrane risk of bias tool for 
randomised controlled trials25 (appendix pp 8–9).

The single-arm meta-analysis was conducted to calcu-
late the overall rates of objective response and disease 
control, and risks of any-grade and severe-grade adverse 
events of each treatment strategy from all eligible trials 
reporting these outcomes. The pairwise meta-analysis 
was conducted for head-to-head comparisons involving 
two or more randomised controlled trials. Hazard ratios 
(HRs) for survival outcomes (progression-free survival 
and overall survival) and odds ratios (ORs) for binary 
outcomes (objective response rate, disease control rate, 
and any-grade and severe-grade adverse events) were 
calculated, along with their 95% CIs. For both the single-
arm and pairwise meta-analyses, heterogeneity was 
assessed through the I² statistic and Q-test 
(appendix p 1).26,27 When statistical heterogeneity was 
substantial (I²>50% or Q-test p<0·10), the random-effects 
model was employed; otherwise, the fixed-effect model 
was adopted.

Network meta-analysis was conducted using a Markov 
chain Monte Carlo simulation technique, allowing for 
comparisons between any two ICI-based treatment strat-
egies by synthesising direct and indirect evidence 
simultaneously.28 Frequentist and Bayesian approaches 
are two typical frameworks fitting network meta-analysis. 
We adopted the Bayesian framework for its capacity to 
incorporate existing knowledge and manage uncertainty 
and sparse data, addressing challenges associated with 
frequentist approaches such as estimation bias and over-
confident conclusions in such scenarios.29,30 The 
fixed-effect consistency model was used, as most direct 
evidence was from a single trial.29 Four different chains 
were run with 100 000 iterations, discarding 50 000 initial 
burn-in iterations per chain. We assessed convergence 
based on the shape of the posterior distributions and 
Gelman–Rubin diagnostics.31 Summary estimate statis-
tics were reported as HRs or ORs for the corresponding 
outcomes, along with their 95% credible intervals (CrIs). 

See Online for appendix
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Treatment rankings were determined by probabilities 
of superiority and summarised using the surface under 
the cumulative rank (SUCRA) value, ranging from 0 
(certainly the least efficacious or toxic treatment) to 1 
(contrary indication compared with the 0 value).30 
Transitivity and consistency are key assumptions under-
lying the network meta-analysis. The transitivity 
of indirect comparisons was assessed by Bayesian metar-
egression analyses on the potential effects of modifiers 
like sample size, sex, age, ethnicity, and smoking status. 
Local inconsistency of direct and indirect results was 
assessed by the comparison of estimates from the pair-
wise meta-analyses (in both frequentist and Bayesian 
frameworks) and network meta-analyses.32,33 Global 
inconsistency was assessed by the comparison between 
consistency and inconsistency models regarding 
the goodness of model fit.33–35

We conducted subgroup analyses to investigate 
the effect of key clinical modifiers and potential predic-
tive markers of treatment efficacy. This included a 
single-arm meta-analysis of the objective response rate 
by PD-L1 expression level, and pairwise and network 
analyses of progression-free survival by PD-L1 expression 
level, EGFR mutation type (exon 19 deletion and exon 21 
Leu858Arg mutation), Thr790Met mutation status, and 
smoking status.

Role of the funding source
There was no funding source for this study.

Results
1243 records through database searches and an additional 
98 studies from conference proceedings were identified 
(figure 1). 17 single-arm trials36–52 and 15 randomised 
controlled trials17–20,53–63 met the inclusion criteria, 
comprising a total of 2886 enrolled participants with 
EGFR mutations. These trials evaluated seven ICI-based 
treatment strategies: ICI monotherapy,36–39,53–57,59,62 
ICI-chemo,17,19,20,40–43,58,59 ICI-antiangio-chemo,17,20,44–46,61 ICI 
plus antiangiogenesis (ICI-antiangio),47 dual ICIs (ICI-
ICI),48,62 dual ICIs plus chemotherapy (ICI-ICI-chemo),50 
and ICI-TKI.49,51,52,63 Of all the included trials, 18 reported 
characteristics for participants with EGFR mutations, 
with higher proportions of women (1152 [59·0%] of 1952) 
and never smokers (1265 [65·6%] of 1929). More 
detailed baseline characteristics are presented in 
the appendix (pp 10−14). All single-arm trials were 
considered high quality with low risk for bias, providing 
clear research aims, inclusion and exclusion criteria, an 
appropriate follow-up period, and evaluation of results 
(appendix p 25). 11 randomised controlled trials were at 
high risk of bias, predominantly due to inadequate 
blinding control arising from their open-label study 
designs (appendix p 26).

In the single-arm meta-analysis, 28 studies 
(2482 participants)18–21,36–52,56–59,61–63 for objective response 
rate, 20 studies (2205 participants)18–21,36,40,41,43–47,50–52,57,58,61–63 
for disease control rate, 16 studies 
(1970 participants)17–19,40,41,43,44,47,49,51,52,61–65 for any-grade adverse 
events, and 18 studies (2167 participants)18,19,40,41,44,46,47,49–52,57,61–65 

for severe-grade adverse events were included. Across all 
ICI-based treatment strategies, the pooled objective 
response rate was 29·0% (95% CI 21·3−36·7, I²=94%) 
and the disease control rate was 77·7% (69·9−85·4, 
I²=93%; appendix pp 17−18). Similarly, the pooled 
objective response rate of chemotherapy was 29·7% 
(26·3−33·0, I²=25%) and the disease control rate was 
78·2% (72·9−83·5, I²=59%; appendix p 21). ICI-antiangio-
chemo had the most favourable pooled objective response 
rate of 60·6% (51·0−70·2, I²=76%) and disease control 
rate of 94·6% (89·4−99·7, I²=78%), followed by 
ICI-chemo with an objective response rate of 35·8% 
(28·1−43·4, I²=69%) and disease control rate of 82·8% 
(80·1−85·5, I²=16%; appendix pp 17−18). Similar efficacy 

Figure 1: Flowchart of study selection
TKI=tyrosine-kinase inhibitor.

17 single-arm trials and 15 randomised controlled trials included

192 full-text articles assessed for eligibility

330 screened based on titles and abstracts

160 excluded
38 not a clinical trial
31 first-line setting
20 no previous EGFR-TKIs
13 updated in later publications

9 have not been resistant to EGFR-TKIs
9 no relevant outcomes
7 protocols only
6 maintenance strategies
4 assessing quality of life

23 other

1011 excluded
1011 duplicates

1243 records identified from databases
572 Embase
400 Web of Science
107 ClinicalTrials.gov

92 Cochrane Library
72 PubMed

98 records identified from conference 
proceedings

Single-arm meta-analysis
(17 single-arm trials and 
11 randomised controlled trials)
28 for objective response rate
20 for disease control rate
16 for any-grade adverse events
18 for severe-grade adverse 

events

Pairwise meta-analysis
(12 randomised controlled
trials)
10 for progression-free survival
10 for overall survival

6 for objective response rate
6 for disease control rate
5 for any-grade adverse events
5 for severe-grade adverse 

events

Network meta-analysis
(14 randomised controlled
trials)
11 for progression-free survival
12 for overall survival

9 for objective response rate
8 for disease control rate
5 for any-grade adverse events
7 for severe-grade adverse 

events
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was observed between ICI-TKI and chemotherapy, as 
well as between ICI-ICI and ICI monotherapy 
(appendix pp 17–18, 21). The pooled incidence of any-
grade adverse events across all ICI-based treatment 
strategies was 91·6% (86·0−97·2, I²=89%) and that 
of severe-grade adverse events was 37·0% (27·7−46·3, 
I²=95%; appendix pp 19−20). The pooled incidence 
of any-grade adverse events of chemotherapy was 87·2% 
(79·0−95·3, I²=91%) and that of severe-grade adverse 
events was 29·3% (15·5−43·0, I²=93%; appendix p 21). 
Combination treatments caused more any-grade and 
severe-grade adverse events than ICI monotherapy, with 
ICI-antiangio-chemo (47·0% [35·0−59·0], I²=82%) and 
ICI-chemo (47·2% [41·3−53·2], I²=54%) showing 
the highest risk of severe-grade adverse events 
(appendix p 20).

The pairwise meta-analysis was available in several 
comparisons: ICI-antiangio-chemo versus ICI-chemo for 
objective response rate, disease control rate, any-grade 
adverse events, and severe-grade adverse events; 
ICI-antiangio-chemo or ICI-chemo versus chemotherapy 
for all assessed outcomes; ICI-antiangio-chemo versus 
antiangio-chemo for progression-free survival; and ICI 
versus chemotherapy for progression-free survival and 
overall survival (figure 2; appendix pp 22−24). 
ICI-antiangio-chemo showed an improved objective 
response rate compared with both ICI-chemo (OR 2·48 
[95% CI 1·03-5·98], I²=65%) and chemotherapy (OR 2·56 
[1·78-3·67], I²=0%). ICI monotherapy was associated with 
shorter progression-free survival than chemotherapy 
(HR 1·73 [95% CI 1·30−2·29], I²=0%), whereas 
ICI-antiangio-chemo (HR 0·54 [0·44−0·67], I²=0%) and 
ICI-chemo (HR 0·77 [0·67−0·88], I²=0%) had prolonged 
progression-free survival compared with chemotherapy. 
Additionally, ICI-chemo had superior overall survival to 
chemotherapy (HR 0·86 [0·75–0·99], I²=0%). The safety 
analysis indicated that ICI-antiangio-chemo had a higher 
incidence of any-grade adverse events compared with 
chemotherapy (OR 6·37 [95% CI 2·65−15·29], I²=43%) 
and of severe-grade adverse events compared with 
ICI-chemo (OR 1·75 [1·17−2·62], I²=0%). No increased 
toxicity was detected for ICI-chemo, compared with 
chemotherapy, with respect to both any-grade adverse 
events (OR 1·14 [0·77−1·71], I²=0%) and severe-grade 
adverse events (OR 1·19 [0·69−2·04], I²=77%).

In the network meta-analysis, a total of 14 randomised 
controlled trials (2768 participants)17–20,53–62 were included. 
ICI-TKI could not be assessed due to insufficient data. 
Among the remaining six ICI-based treatment strategies, 
all were assessable for objective response rate, disease 
control rate, and severe-grade adverse events, 
five for progression-free survival and overall survival, and 
three for any-grade adverse events for their comparative 
estimates (figure 3). The transitivity assumption was 
accepted based on the absence of significant variabilities 
(appendix p 15). Consistency was ensured locally by 
the consistent results of pairwise meta-analyses (either 

frequentist or Bayesian) and network meta-analyses 
(appendix pp 27−28), and globally by similar fit of consist-
ency and inconsistency models (appendix p 16).

In the network meta-analysis, ICI-antiangio-chemo 
yielded the best progression-free survival, with signifi-
cant benefits over ICI-chemo (HR 0·71 [95% CrI 
0·59−0·85]), ICI monotherapy (HR 0·30 [0·22−0·41]), 
antiangio-chemo (HR 0·76 [0·58−1·00]), and chemo-
therapy (HR 0·54 [0·45−0·64]). ICI-chemo had better 
progression-free survival than ICI monotherapy 
(HR 0·42 [0·31−0·57]) and chemotherapy (HR 0·76 
[0·67−0·86]). ICI monotherapy did not provide 
progression-free survival benefits over the non-ICI-
based strategies, including chemotherapy (HR 1·80 
[1·38−2·37]) and antiangio-chemo (HR 2·57 
[1·72−3·84]). No significant differences were found 
among all the comparable treatment strategies in 
overall survival, except the benefit of ICI-chemo over 
chemotherapy alone (HR 1·15 [1·00−1·33]; figure 4A).

In terms of response rates, addition of chemotherapy 
to ICIs improved objective response rate compared with 
ICI monotherapy, and the addition of anti-angiogenic 

Figure 2: Pooled progression-free survival of each head-to-head comparison in pairwise meta-analysis
Pooled HRs for progression-free survival and their corresponding 95% CIs. Antiangio-chemo=antiangiogenesis 
plus chemotherapy. Chemo=chemotherapy. HR=hazard ratio. ICI=immune checkpoint inhibitor. ICI-antiangio-
chemo=ICI plus antiangiogenesis plus chemotherapy. ICI-chemo=ICI plus chemotherapy.
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therapy to this combination further improved objective 
response rate (figure 4B). ICI-antiangio-chemo and 
ICI-chemo showed no significant difference in disease 
control rate, and they both controlled the disease better 
than ICI monotherapy and dual therapy, and chemo-
therapy (figure 4B). ICI monotherapy showed inferior 
objective response rate and disease control rate compared 
with the non-ICI-based strategies. In terms of safety, 
ICI-antiangio-chemo was associated with higher risks 
of both any-grade and severe-grade adverse events over 
ICI-chemo and chemotherapy (figure 4C).

The Bayesian ranking profiles, based on the SUCRA 
values of the comparable treatment strategies for each 
outcome, were consistent with the results based on 
HR and OR estimates (appendix p 29). Of note, 
ICI-antiangio-chemo ranked first for the efficacy 
outcomes—progression-free survival (SUCRA=0·99), 
objective response rate (SUCRA=0·97), and disease 
control rate (SUCRA=0·89). However, it also ranked 
first in causing adverse events of any-grade 
(SUCRA=0·94) and severe-grade (SUCRA=0·85).

In subgroup single-arm meta-analysis, the pooled 
objective response rate of ICI-based treatment strategies 
was improved for PD-L1 expression of 1% or greater 
compared with less than 1% (appendix p 30). When 
examining each individual treatment strategy, a signifi-
cantly improved objective response rate in participants 
with PD-L1 expression of 1% or greater compared with 
less than 1% could be observed for ICI-chemo but not 
for ICI-antiangio-chemo (appendix p 31). In subgroup 
pairwise meta-analysis (appendix pp 32−34), relative 
progression-free survival efficacy could be explored for 
the comparison of ICI-antiangio-chemo versus chemo-
therapy involving two trials.21,61 Compared with 
chemotherapy alone, ICI-antiangio-chemo showed a 

favourable HR for progression-free survival across most 
subgroups, except for participants with Thr790Met 
mutations; progression-free survival was greater for 
participants with Leu858Arg mutation than for those 
with exon 19 deletion, and did not change with 
the smoking status of the participants (appendix p 34). 
In subgroup network meta-analysis (appendix pp 35−38), 
ICI-antiangio-chemo yielded progression-free survival 
benefits over ICI monotherapy and chemotherapy 
across most subgroups, except in participants with 
Thr790Met mutations when compared with chemo-
therapy. ICI-antiangio-chemo yielded progression-free 
survival benefits over ICI-chemo for participants with 
PD-L1 expression of 50% or greater, negative Thr790Met 
mutations, and smoking history, but not in those with 
PD-L1 expression below 1% or those with EGFR exon 19 
deletion, EGFR exon 21 Leu858Arg mutation, or 
Thr790Met mutations.

Discussion
In this meta-analysis, we comprehensively summarised 
the efficacy and safety of currently available ICI-based 
treatment strategies, including ICI monotherapy and its 
combination with chemotherapy, antiangiogenic agents, 
another ICI, and EGFR-TKIs for individuals with 
advanced EGFR-mutated NSCLC who progressed on 
EGFR-TKIs. The pooled results from single-arm, pair-
wise, and network meta-analyses were highly consistent, 
indicating that the efficacy of ICI monotherapy can be 
improved by combination with non-ICI-based treat-
ments. Specifically, ICI-chemo showed encouraging 
antitumour activity with significant improvements in 
progression-free survival and disease control rate over 
ICI monotherapy and chemotherapy alone. Furthermore, 
the addition of an antiangiogenic therapy to 

Figure 3: Eligible comparisons for each outcome in the network meta-analysis
Network plots illustrating the direct and indirect comparisons for (A) progression-free survival and overall survival (B) objective response rate and disease control 
rate, and (C) any-grade and severe-grade adverse events. Circular nodes represent treatment strategies with the total number of involved participants in brackets. 
Lines represent the direct comparisons, with thicknesses proportional to the number of involved studies. Indirect comparisons in the network plots are derived from 
the combination of direct comparisons within the network. Antiangio-chemo=antiangiogenesis plus chemotherapy. Chemo=chemotherapy. ICI=immune checkpoint 
inhibitor. ICI-antiangio-chemo=ICI plus antiangiogenesis plus chemotherapy. ICI-chemo=ICI plus chemotherapy. ICI-ICI=dual ICIs.
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the ICI-chemo combination (ICI-antiangio-chemo) 
appeared to be the most effective treatment strategy, 
offering the best benefits in terms of progression-free 
survival, objective response rate, and disease control rate 
amongst all comparable treatment options.

The benefits observed with these combination 
therapies over their individual components suggest a 
synergetic effect of ICI-based and non-ICI based 
therapies in enhancing the anticancer activity in 
the EGFR-mutated tumour microenvironment, which is 
known to be immunosuppressive.66 Although the precise 
mechanisms underlying these synergistic effects 
remain to be fully understood, studies suggest 
that chemotherapy-induced neoantigen release and 
antiangiogenesis-induced immune reprogramming play 
important roles in activating the tumour microenviron-
ment from an immunosuppressive state.67–70 In addition, 
multiple preclinical studies71,72 have shown that 
EGFR-TKI resistance is associated with increased 
tumour VEGF levels, and targeted anti-angiogenic 
therapy could enhance antitumour activity in this 
resistant tumour. The subgroup analyses showed that 
the level of PD-L1 expression could be a beneficial 
biomarker of ICI-based treatment strategies. However, 
this predictive value varied across different individual 
treatment strategies. Specifically, PD-L1 expression 
levels showed a predictive value for ICI-chemo with a 
cutoff point of 1%, whereas this was not the case for 
ICI-antiangio-chemo, possibly due to the immune effect 
of the interaction between VEGF level signalling and its 
inhibition.73,74 Our study also elucidated that the EGFR 
Leu858Arg mutation serves as a positive and Thr790Met 
mutations as negative prognostic indicators for 
ICI-antiangio-chemo. Partial explanations for this 
finding might be the higher tumour mutation burden in 
tumours with Leu858Arg mutation than those with 
exon 19 deletion,75 and a lower PD-L1 expression level in 
Thr790Met-mutated tumours than in Thr790Met-
negative tumours;76 moreover, CD8+PD-1+ T cells 
infiltrate more in tumours with Leu858Arg mutation 
than in those with exon 19 deletion, and less in 
Thr790Met-mutated tumours than in Thr790Met-
negative tumours.77 Subgroup network meta-analysis 
supported the use of ICI-antiangio-chemo and 
ICI-chemo according to the participant characteristics. 
These findings underscore the complex interplay 
between genetic mutations, the tumour microenviron-
ment, and immune response, and thus highlight 
the value of a biomarker-directed approach in selecting 
tailored ICI-based treatment strategies for individuals 
with advanced EGFR-mutated NSCLC who have 
progressed on EGFR-TKIs. However, these subgroup 
findings should be interpreted with caution due to 
limitations such as small sample sizes, imbalanced 
baseline characteristics, and low statistical power. 
Consequently, there is a need for further clinical research 
to validate these potential efficacy predictors.

Previous studies have consistently supported the idea 
that the toxicity profile of ICI-antiangio-chemo is gener-
ally well tolerated, with grade 3 or worse adverse events 
predominant in haematological parameters (neutro-
penia, anaemia, thrombocytopenia, decreased blood cell 
count, and myelosuppression) and non-haematological 
parameters (peripheral neuropathy, myalgia, alopecia, 
and fatigue).20,21,45,46,61 Moreover, in the ORIENT-31 
study,17 participants receiving ICI-antiangio-chemo had a 
favourable Eastern Cooperative Oncology Group perfor-
mance status without a loss in quality of life compared 
with those receiving chemotherapy. Our pairwise and 
network meta-analyses found no additional toxicity 

Figure 4: Pooled efficacy and safety estimates of multiple comparisons in network meta-analysis
(A) Progression-free survival and overall survival. (B) Objective response rate and disease control rate. (C) Any-
grade and severe-grade adverse events. Data are pooled HR (95% credible interval) for A and OR (95% credible 
interval) for B and C. Bold data indicate a significant difference. Antiangio-chemo=antiangiogenesis plus 
chemotherapy. Chemo=chemotherapy. ICI=immune checkpoint inhibitor. ICI-chemo=ICI plus chemotherapy. 
ICI-antiangio-chemo=ICI plus antiangiogenesis plus chemotherapy. NA=not applicable.
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signals for ICI-chemo compared with chemotherapy. 
However, the risk of severe-grade adverse events was 
higher with ICI-antiangio-chemo than with ICI-chemo 
or chemotherapy, reflecting the expected increase in 
toxicity associated with increased treatment. Further
more, the single-arm meta-analysis, including a larger 
sample size, revealed that ICI-antiangio-chemo and 
ICI-chemo consistently ranked first in severe-grade 
adverse events. Therefore, clinicians should bear in mind 
the possibility of increased toxicity when prescribing 
these combination treatment strategies, aiming to main-
tain an optimal balance between efficacy and adverse 
effects for patient care.

To our knowledge, this study is the first comprehensive 
investigation of the efficacy and safety of multiple 
ICI-based treatment strategies for individuals with 
advanced EGFR-mutated NSCLC who have progressed 
on EGFR-TKIs. The findings challenge the widely 
accepted theory in current clinical practice that ICIs do 
not offer substantial benefits to this population and 
propose that this theory only applies to ICI monotherapy 
and not to specific ICI-based combination treatments 
such as ICI-antiangio-chemo and ICI-chemo.

Previous meta-analyses on ICI treatments for advanced 
EGFR-mutated NSCLC have often overlooked individuals 
resistant to EGFR-TKIs and ICI-based combination treat-
ments.11,13 Two more recent meta-analyses78,79 have 
highlighted the antitumour benefits of ICI-based combi-
nations for individuals who are TKI resistant, but had 
notable confounding factors. Qian and colleagues78 
focused on a subset of ICI-based combination treatments 
and used a non-uniform control group with chemo-
therapy and antiangio-chemo mixed together. Wang and 
colleagues79 might not offer robust comparisons across 
various treatment strategies due to the inclusion 
of numerous non-randomised controlled trials and 
scarce randomised controlled trials for each treatment 
strategy. In comparison, the main strengths of this study 
include: an up-to-date time window covering new and 
updated data, allowing the inclusion of the largest 
number of studies and all available ICI-based treatment 
strategies; enhanced robustness and reliability by 
employing diverse meta-analytical techniques on data 
from not only multi-arm trials but also an extensive 
collection of single-arm trials; and assessments in 
multiple key subpopulations stratified by PD-L1 expres-
sion level, EGFR mutation type, Thr790Met mutation 
status, and smoking status, substantially expanding 
the clinical applicability of the findings.

However, several limitations of our work should be 
considered. First, our study used reported trial data rather 
than individual data. Despite the inclusion of only 
prospectively registered clinical trials, differences in 
trial design and heterogeneity among participants 
inherently persisted as possible unmeasured confounders 
impairing estimates. For instance, previous EGFR-TKIs to 
which participants were resistant to varied across trials, 

and some trials only provided investigator-assessed 
outcome data. Second, the robustness and reliability 
of results might have been undermined by data sparse-
ness. There were a relatively low number of trials and 
participants involving some ICI-based treatment strate-
gies like ICI-antiangio (only one trial47) and ICI-ICI (only 
one trial62). Nonetheless, we employed three meta-
analytical methods (single-arm, pairwise, and network) 
for multifaceted evaluations, yielding mostly consistent 
results. Third, molecular mechanisms of EGFR-TKI 
resistance, such as MET amplification,80 are increasingly 
recognised but were not addressed in our study due to 
insufficient accessible information. Lastly, there was little 
evidence of the translation of progression-free survival 
benefits to overall survival improvement, except for 
ICI-chemo over chemotherapy. The overall survival find-
ings should be carefully interpreted considering the often 
immature reports, high rate of subsequent treatments, 
and common treatment switching in included randomised 
controlled trials. Hence, we have chosen progression-free 
survival as the primary outcome measure, given its 
substantially mature follow-up and low influence from 
post-progression treatments. It will be particularly inter-
esting to investigate overall survival outcomes with 
ICI-antiangio-chemo and ICI-chemo in future studies for 
patients with EGFR-mutated NSCLC resistant to 
EGFR-TKIs, compared with other treatment strategies.
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